Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.443
1.
Nat Commun ; 15(1): 3953, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729967

Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.


Lactation , Mammary Glands, Animal , Milk , Animals , Female , Mammary Glands, Animal/metabolism , Humans , Mice , Milk/metabolism , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Epithelial Cells/metabolism , Macropodidae/metabolism , Mammals , Marsupialia
2.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722417

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Epithelial Cells , Mammary Glands, Animal , STAT3 Transcription Factor , Animals , Female , Cattle , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mice , Epithelial Cells/metabolism , STAT3 Transcription Factor/metabolism , Phosphorylation , Pregnancy , Parturition/physiology , Parturition/metabolism , Signal Transduction
3.
Breast Cancer Res ; 26(1): 74, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702730

The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.


Mammary Glands, Animal , Repressor Proteins , Serum Response Factor , Stem Cells , Transcription Factors , Animals , Female , Mice , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Stem Cells/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Serum Response Factor/metabolism , Serum Response Factor/genetics , Humans , Trans-Activators/metabolism , Trans-Activators/genetics
4.
Anat Histol Embryol ; 53(3): e13045, 2024 May.
Article En | MEDLINE | ID: mdl-38735038

This work extensively studied the vasculature of mice mammary fat pads (BALB/c and C57BL/6) with special reference to haematogenous drainage routes. Mammary fat pads were five pairs (first cervical, second and third thoracic, fourth abdominal and fifth inguinal), bilaterally symmetrical, extending laterally and continuously with the subcutaneous fascia. The superficial cervical artery and vein primarily accomplished the blood vasculature of the first mammary fat pad, while the lateral thoracic and external thoracic arteries and veins supplied the second and third mammary fat pads. The superficial cervical vein (found parallel to the superficial cervical artery) drained into the external jugular vein. The lateral thoracic artery and external thoracic artery branched almost at the same level as the axillary artery (branch of subclavian artery), the latter being more medial in position. However, in some specimens, the branching of both arteries appeared to be at the same level, and their origins were indistinguishable. The lateral thoracic vein that was parallel to the lateral thoracic artery drained to the axillary vein close to the drainage of the external thoracic vein. The lateral thoracic, superficial caudal epigastric, iliolumbar and external thoracic arteries and veins vascularized the fourth mammary fat pad and displayed anastomosis among themselves. The iliolumbar vein (found parallel to the iliolumbar artery) drained into the inferior vena cava. The superficial caudal epigastric vein (found parallel to the superficial caudal epigastric artery (SCaEA)) drained into the femoral vein. Unlike humans, the internal thoracic artery and vein did not participate in the vasculature of mammary fat pads. The SCaEA and vein supplied blood and drained the fifth mammary fat pad. The anatomical continuity of the fourth and fifth mammary fat pads provided common drainage for both mammary fat pads. The BALB/c and C57BL/6 mice strains studied did not differ in topography and size of mammary fat pads. The vascular supply and drainage of the mammary fat pads also did not differ in the strains studied. Only minor variations could be noted in the small veins draining into the lateral thoracic vein. Lateral tributaries seen in the terminal end of the lateral thoracic vein were absent in the C57BL/6 mice.


Adipose Tissue , Mice, Inbred BALB C , Mice, Inbred C57BL , Animals , Mice/anatomy & histology , Mice, Inbred C57BL/anatomy & histology , Adipose Tissue/anatomy & histology , Adipose Tissue/blood supply , Female , Mammary Glands, Animal/blood supply , Mammary Glands, Animal/anatomy & histology , Thoracic Arteries/anatomy & histology
5.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673732

Adipose tissue is an active endocrine gland, synthesizing and secreting multiple signaling molecules termed adipokines. Following the detection of adipokines and their receptors in the mammary tissue of various species, it is indicated that adipokines play a role in the development of the mammary gland. The aim of the present study was to determine the concentration-dependent influence of three adipokines, leptin, adiponectin, and chemerin, on the viability, apoptosis, and secretory activity of BME-UV1 bovine mammary epithelial cells. The study confirmed that BME-UV1 cells contain the leptin receptor (Ob-R) protein, and express transcripts of adiponectin (ADIPOR1 and ADIPOR2) and chemerin (CMLKR1 and GPR1) receptors. Regardless of the administered dose, none of the three tested adipokines had an effect on the viability of BME-UV1 cells, and the number of apoptotic cells remained unchanged. However, chemerin (100 ng/mL) stimulated BME-UV1 cells to synthesize and secrete αS1-casein, the major protein component of milk. These results indicate that chemerin may be a potent regulator of the bovine mammary epithelial cells' functional differentiation, contributing, along with the major systemic hormones and local growth factors, to the development of the bovine mammary gland.


Apoptosis , Chemokines , Epithelial Cells , Mammary Glands, Animal , Animals , Cattle , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Chemokines/metabolism , Female , Cell Survival/drug effects , Cell Line , Receptors, Adiponectin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Caseins/metabolism , Adiponectin/metabolism
6.
Mol Nutr Food Res ; 68(9): e2300703, 2024 May.
Article En | MEDLINE | ID: mdl-38676329

Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκß) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.


Galactogogues , Lactation , Polyphenols , Lactation/drug effects , Polyphenols/pharmacology , Female , Humans , Galactogogues/pharmacology , Animals , Dietary Supplements , Mammary Glands, Animal/drug effects , Signal Transduction/drug effects , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism
7.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Article En | MEDLINE | ID: mdl-38583827

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Epithelial Cells , Goats , Lipid Metabolism , Mammary Glands, Animal , MicroRNAs , Phosphotransferases (Alcohol Group Acceptor) , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Goats/genetics , Lipid Metabolism/genetics , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Female , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/deficiency , Up-Regulation/genetics , Lipid Droplets/metabolism , Gene Expression Regulation , Triglycerides/metabolism
8.
Res Vet Sci ; 172: 105253, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579632

The aim of the study was to examine the effects of repeated administrations of antioxidant multiminerals and vitamins in transition buffaloes on udder defense mechanism, antioxidant activity and occurrence of intramammary infection (IMI) in early lactation period. Forty clinically healthy pregnant buffaloes were enrolled 45 days before expected date of calving and randomly allocated into five different supplementation groups (n = 8): only basal ration (control), vitamin E and selenium (VES), multiminerals (MM), ascorbic acid (AA) and chromium (Cr) picolinate in basal diet. The udder defense mechanism was monitored by measuring phagocytic activity (PA), myeloperoxidase (MPO) and nitric oxide (NO) productions in milk leukocytes, antioxidant activity was evaluated by measuring total antioxidant capacity (TAC) in plasma and occurrence of IMI was assessed by milk cytology, bacterial count in milk and visible clinical signs of udder until day 28 post-calving. The results showed that the VES and MM supplementations exhibited significantly higher PA, MPO and NO productions of milk leukocytes till first week of lactation whereas, elevated mean TAC in plasma was maintained from day -7 to 1 of calving in MM supplementation group as compared to control group. Statistically, no significant difference in occurrences of subclinical or clinical IMI was noted across the groups until four weeks of lactation. Taken together, it is concluded that repeated administrations of VES and MM to transition buffaloes could be an effective strategy to maintain good udder health by augmenting milk leukocyte functions and antioxidant status and preventing incidence of IMI in early lactation.


Antioxidants , Buffaloes , Dietary Supplements , Lactation , Mammary Glands, Animal , Vitamins , Animals , Female , Antioxidants/administration & dosage , Antioxidants/metabolism , Lactation/drug effects , Vitamins/administration & dosage , Vitamins/pharmacology , Mammary Glands, Animal/drug effects , Milk/chemistry , Diet/veterinary , Animal Feed/analysis , Minerals/administration & dosage , Pregnancy , Random Allocation
9.
Cell Rep Methods ; 4(4): 100741, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38569541

Deep proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present DROPPS (droplet-based one-pot preparation for proteomic samples), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. By applying DROPPS within the mammary epithelium, we elucidated the connection between mitochondrial activity and clonogenicity, identifying CD36 as a marker of progenitor capacity in the basal cell compartment. We anticipate that DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations.


Biomarkers , CD36 Antigens , Mammary Glands, Animal , Proteomics , Stem Cells , Proteomics/methods , CD36 Antigens/metabolism , Animals , Female , Stem Cells/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Epithelium/metabolism , Mice , Humans , Mitochondria/metabolism
10.
J Agric Food Chem ; 72(19): 10879-10896, 2024 May 15.
Article En | MEDLINE | ID: mdl-38686994

Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-ß-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.


Aging , Gastrointestinal Microbiome , Isoflavones , Mammary Glands, Animal , p38 Mitogen-Activated Protein Kinases , Isoflavones/pharmacology , Animals , Mice , Gastrointestinal Microbiome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Aging/drug effects , Humans , Pueraria/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Bacteria/isolation & purification , Signal Transduction/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cellular Senescence/drug effects , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL
11.
Sci Rep ; 14(1): 9117, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643232

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


MicroRNAs , Milk Proteins , Female , Cattle , Animals , Milk Proteins/metabolism , Medicago sativa/genetics , Medicago sativa/metabolism , Phosphoric Monoester Hydrolases/metabolism , Mammary Glands, Animal/metabolism , Caseins/genetics , Caseins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Luciferases/metabolism , Epithelial Cells/metabolism
12.
Nat Commun ; 15(1): 3282, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627380

Exposure to pathogens throughout a lifetime influences immunity and organ function. Here, we explore how the systemic host-response to bacterial urinary tract infection (UTI) induces tissue-specific alterations to the mammary gland. Utilizing a combination of histological tissue analysis, single cell transcriptomics, and flow cytometry, we identify that mammary tissue from UTI-bearing mice displays collagen deposition, enlarged ductal structures, ductal hyperplasia with atypical epithelial transcriptomes and altered immune composition. Bacterial cells are absent in the mammary tissue and blood of UTI-bearing mice, therefore, alterations to the distal mammary tissue are mediated by the systemic host response to local infection. Furthermore, broad spectrum antibiotic treatment resolves the infection and restores mammary cellular and tissue homeostasis. Systemically, unresolved UTI correlates with increased plasma levels of the metalloproteinase inhibitor, TIMP1, which controls extracellular matrix remodeling and neutrophil function. Treatment of nulliparous and post-lactation UTI-bearing female mice with a TIMP1 neutralizing antibody, restores mammary tissue normal homeostasis, thus providing evidence for a link between the systemic host response during UTI and mammary gland alterations.


Mammary Glands, Animal , Urinary Tract Infections , Animals , Female , Mice , Collagen , Extracellular Matrix/physiology , Homeostasis
13.
Nat Commun ; 15(1): 3288, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38627401

Lactation insufficiency affects many women worldwide. During lactation, a large portion of mammary gland alveolar cells become polyploid, but how these cells balance the hyperproliferation occurring during normal alveologenesis with terminal differentiation required for lactation is unknown. Here, we show that DNA damage accumulates due to replication stress during pregnancy, activating the DNA damage response. Modulation of DNA damage levels in vivo by intraductal injections of nucleosides or DNA damaging agents reveals that the degree of DNA damage accumulated during pregnancy governs endoreplication and milk production. We identify a mechanism involving early mitotic arrest through CDK1 inactivation, resulting in a heterogeneous alveolar population with regards to ploidy and nuclei number. The inactivation of CDK1 is mediated by the DNA damage response kinase WEE1 with homozygous loss of Wee1 resulting in decreased endoreplication, alveologenesis and milk production. Thus, we propose that the DNA damage response to replication stress couples proliferation and endoreplication during mammary gland alveologenesis. Our study sheds light on mechanisms governing lactogenesis and identifies non-hormonal means for increasing milk production.


Alveolar Epithelial Cells , Mammary Glands, Human , Pregnancy , Animals , Female , Humans , Endoreduplication , Mammary Glands, Animal , Lactation/genetics , Milk
14.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Article En | MEDLINE | ID: mdl-38623994

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Caseins , MicroRNAs , Female , Animals , Caseins/genetics , Caseins/metabolism , Milk Proteins , Goats/physiology , Epithelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mammary Glands, Animal/metabolism
15.
FASEB J ; 38(7): e23587, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38568835

Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.


Mastitis , Staphylococcal Infections , Female , Humans , Rats , Animals , Staphylococcus aureus/physiology , Proteomics , Arachidonic Acid/metabolism , Mastitis/microbiology , Mastitis/pathology , Mastitis/veterinary , Inflammation/metabolism , Metabolic Networks and Pathways , Mammary Glands, Animal/metabolism , Staphylococcal Infections/metabolism
16.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673850

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Isothiocyanates , NF-E2-Related Factor 2 , Quassins , Sulfoxides , Transcriptome , Animals , Cattle , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Isothiocyanates/pharmacology , Quassins/pharmacology , Sulfoxides/pharmacology , Transcriptome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Computer Simulation , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
17.
Pestic Biochem Physiol ; 201: 105866, 2024 May.
Article En | MEDLINE | ID: mdl-38685242

Pea Albumin 1, subunit b (PA1b) is a 37 amino acid peptide. It was extracted from pea seeds and showed significant insecticidal activity against certain insects, such as the mosquitoes Culex pipiens and Aedes aegyptii, cereal weevils (genus Sitophilus), and certain species of aphids. Considering that pea seeds are regularly consumed by humans and mammals, PA1b is assumed to be a promising bioinsecticide with no allergenicity or toxicity to hosts. To clarify this aspect, PA1b was applied to bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). The results revealed that LPS induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP-1) secretion, while PA1b depressed these cytokines release via inhibiting NF-κB signaling activation. In addition, PA1b protected mammary epithelial cells from impairment caused by LPS, because it reduced cell membrane permeability and subsequently reconstructed mammary epithelial cell viability. Moreover, it inhibited cell apoptosis accompanied with alleviated oxidative stress. Furthermore, PA1b prevented opening of mitochondrial permeability transition pores, in turn up-regulated mitochondrial membrane potential and ATP production. Therefore, PA1b improved mitochondrial function, which contributed to re-construction of mammary epithelial cell viability. In conclusion, PA1b alleviates LPS-induced inflammation of bovine mammary epithelial cells via inhibiting NF-κB signaling activation and protects bovine mammary epithelial cells by improving mitochondrial function. PA1b is a good therapeutic survival factor for mammary epithelial cells.


Epithelial Cells , Inflammation , Lipopolysaccharides , Animals , Lipopolysaccharides/pharmacology , Cattle , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Insecticides/toxicity , Insecticides/pharmacology , Female , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Oxidative Stress/drug effects , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
PLoS One ; 19(4): e0299929, 2024.
Article En | MEDLINE | ID: mdl-38573969

A cross-sectional study was conducted to estimate the prevalence of intramammary infection (IMI) associated bacteria and to identify risk factors for pathogen group-specific IMI in water buffalo in Bangladesh. A California Mastitis Test (CMT) and bacteriological cultures were performed on 1,374 quarter milk samples collected from 763 water buffalo from 244 buffalo farms in nine districts in Bangladesh. Quarter, buffalo, and farm-related data were obtained through questionnaires and visual observations. A total of 618 quarter samples were found to be culture positive. Non-aureus staphylococci were the predominant IMI-associated bacterial species, and Staphylococcus (S.) chromogenes, S. hyicus, and S. epidermidis were the most common bacteria found. The proportion of non-aureus staphylococci or Mammaliicoccus sciuri (NASM), S. aureus, and other bacterial species identified in the buffalo quarter samples varied between buffalo farms. Therefore, different management practices, buffalo breeding factors, and nutrition were considered and further analyzed when estimating the IMI odds ratio (OR). The odds of IMI by any pathogen (OR: 1.8) or by NASM (OR: 2.2) was high in buffalo herds with poor milking hygiene. Poor cleanliness of the hind quarters had a high odds of IMI caused by any pathogen (OR: 2.0) or NASM (OR: 1.9). Twice daily milking (OR: 3.1) and farms with buffalo purchased from another herd (OR: 2.0) were associated with IMI by any pathogen. Asymmetrical udders were associated with IMI-caused by any bacteria (OR: 1.7). A poor body condition score showed higher odds of IMI by any pathogen (OR: 1.4) or by NASM (OR: 1.7). This study shows that the prevalence of IMI in water buffalo was high and varied between farms. In accordance with the literature, our data highlight that IMI can be partly controlled through better farm management, primarily by improving hygiene, milking management, breeding, and nutrition.


Mastitis, Bovine , Staphylococcal Infections , Staphylococcus , Animals , Female , Cattle , Staphylococcus aureus , Staphylococcal Infections/microbiology , Buffaloes , Cross-Sectional Studies , Mastitis, Bovine/microbiology , Milk/microbiology , Staphylococcus epidermidis , Risk Factors , Mammary Glands, Animal/microbiology
19.
PLoS One ; 19(4): e0300728, 2024.
Article En | MEDLINE | ID: mdl-38683862

Feeding high-gain diets and an inadequate energy and protein ratio during pre-puberty may lead to impaired growth and mammary gland development of heifers. Thus, frequent application of bovine somatotropin (bST) may prevent future losses in productivity, improve mammary development and animal performance. We aimed to evaluate the effects of bST on digestibility, performance, blood metabolites, mammary gland development, and carcass composition of high-performance prepubertal Holstein × Gyr heifers. Thirty-four Holstein × Gyr heifers with an average initial body weight of 218 ± 49 kg and 14 ± 4 months of age were submitted to an 84-day trial evaluating the effects of no bST or bST injections. Treatments were randomly assigned to each animal within one of the tree blocks. The bST did not influence digestibility or performance parameters. Regarding blood results, IGF1 concentration presented an interaction between treatment and day, where bST heifers had the highest IGF1 concentration. Heifers receiving bST also showed increased ribeye area; however, only an experimental day effect for backfat thickness was observed, with greater accumulation of carcass fat on day 84. Heifers receiving bST had lower pixels/mm² on parenchyma, characteristic of greater parenchymal tissue. Moreover, heifers on bST treatment also had reduced pixels/mm2, characteristic of reduced fat pad tissue. Lastly, bST injections did not influence liver and muscle gene expression, nor most genes evaluated in mammary gland tissue, except for IGFBP3 expression, which was greater for bST heifers. In summary, we confirm the efficacy of bST injections to overcome the detrimental effects of high-gain diets on mammary gland growth and to improve lean carcass gain of prepubertal Holstein × Gyr heifers.


Growth Hormone , Animals , Cattle , Female , Growth Hormone/blood , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/drug effects , Insulin-Like Growth Factor I/metabolism , Diet/veterinary , Animal Feed/analysis , Sexual Maturation/drug effects , Body Composition/drug effects , Animal Nutritional Physiological Phenomena , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor Binding Protein 3/metabolism
20.
Vet Microbiol ; 293: 110091, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626624

Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.


Epithelial Cells , Mastitis, Bovine , Phagocytosis , Staphylococcal Infections , Staphylococcus aureus , rab GTP-Binding Proteins , Animals , Cattle , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Staphylococcus aureus/physiology , Female , Epithelial Cells/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Mastitis, Bovine/microbiology , Mammary Glands, Animal/microbiology , Endosomes/metabolism , Endosomes/microbiology , Lysosomes/metabolism , Lysosomes/microbiology , Cell Line , Phagosomes/microbiology
...